Monodromy Zeta-functions of Deformations and Newton Diagrams
نویسندگان
چکیده
For a one-parameter deformation of an analytic complex function germ of several variables, there is defined its monodromy zeta-function. We give a Varchenko type formula for this zeta-function if the deformation is non-degenerate with respect to its Newton diagram.
منابع مشابه
0 M ay 1 99 7 Zeta - functions for germs of meromorphic functions and Newton diagrams
For a germ of a meromorphic function f = P Q , we offer notions of the mono-dromy operators at zero and at infinity. If the holomorphic functions P and Q are non-degenerated with respect to their Newton diagrams, we give an analogue of the formula of Varchenko for the zeta-functions of these monodromy operators. A polynomial f of (n + 1) complex variables of degree d determines a meromorphic fu...
متن کاملMonodromy zeta functions at infinity , Newton polyhedra and constructible sheaves ∗
By using sheaf-theoretical methods such as constructible sheaves, we generalize the formula of Libgober-Sperber [15] concerning the zeta functions of monodromy at infinity of polynomial maps into various directions. In particular, some formulas for the zeta functions of global monodromy along the fibers of bifurcation points of polynomial maps will be obtained.
متن کاملMonodromy zeta functions at infinity , Newton polyhedra and
By using sheaf-theoretical methods such as constructible sheaves, we generalize the formula of Libgober-Sperber [17] concerning the zeta functions of monodromy at infinity of polynomial maps into various directions. In particular, some formulas for the zeta functions of global monodromy along the fibers of bifurcation points of polynomial maps will be obtained.
متن کاملDeformations of polynomials and their zeta functions
For an analytic in σ ∈ (C, 0) family Pσ of polynomials in n variables there is defined a monodromy transformation h of the zero level set Vσ = {Pσ = 0} for σ 6= 0 small enough. The zeta function of this monodromy transformation is written as an integral with respect to the Euler characteristic of the corresponding local data. This leads to a study of deformations of holomorphic germs and their ...
متن کاملMonodromy Eigenvalues Are Induced by Poles of Zeta Functions – the Irreducible Curve Case
The ‘monodromy conjecture’ for a hypersurface singularity f predicts that a pole of its topological (or related) zeta function induces one of its monodromy eigenvalues. However, in general only a few eigenvalues are obtained this way. The second author proposed to consider zeta functions associated with the hypersurface and with a differential form and raised the following question. Can one fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014